feisty.testcase.forcing_cyclic

Contents

feisty.testcase.forcing_cyclic#

feisty.testcase.forcing_cyclic(domain_dict, nt=365, zoo_spec=None)#

Return forcing data for a test case using harmonic functions to generate seasonally-varying temperature, POC flux and zooplankton biomass forcing.

Parameters:
  • domain_dict (dict) – Dictionary containing feisty.domain settings.

  • nt (integer) – Number of time sets (days)

  • zoo_spec (dict or list) –

    If list, specifies zoo_names (i.e., zoo_spec = ["zoo1", "zoo2"]) and parameters are generated using default values. If dict then specifies a dictionary of parameters for cyclic harmonic function (mu, amp_fraction, phase), for example:

    zoo_spec = {"zoo1": "mu": 4.0, "amp_fraction": 0.2, "phase": 0.0}
    

Returns:

forcing

The dataset with forcing variable. For example:

<xarray.Dataset>
Dimensions:          (time: 365, X: 22, zooplankton: 1)
Coordinates:
  * time             (time) float64 0.0 1.0 2.0 3.0 ... 361.0 362.0 363.0 364.0
  * X                (X) float64 -0.5 -0.2381 0.02381 0.2857 ... 4.476 4.738 5.0
  * zooplankton      (zooplankton) <U3 'Zoo'
Data variables:
    T_pelagic        (time, X) float64 18.2 18.2 18.2 18.2 ... 18.2 18.2 18.2
    T_bottom         (time, X) float64 4.2 4.2 4.2 4.2 4.2 ... 4.2 4.2 4.2 4.2
    poc_flux_bottom  (time, X) float64 0.02785 0.02775 ... 0.002347 0.002346
    zooC             (zooplankton, time, X) float64 3.329 3.329 ... 3.321 3.321
    zoo_mort         (zooplankton, time, X) float64 0.7756 0.7756 ... 0.7722
Attributes:
    note:     Idealized cyclic forcing for FEISTY model.

Return type:

xarray.Dataset